This website is currently being updated – Apologies for any inconvenience.

Pure Substances and Mixtures

Gas, liquid and solid interconversions.

Pure substances and mixtures.

Solvent, solute, solution. Suspension.

Separation of mixtures by filtration, evaporation to dryness and crystallization (partial evaporation up to the point of crystallization), simple distillation, paper chromatography, sublimation and fractional distillation. The use of the separating funnel.

Boiling point and melting point of substances as criteria of purity.

Action of heat on materials.

Decomposition of hydrates, carbonates, hydrogencarbonates, nitrates and hydroxides by heat.

Thermally stable compounds.

Reversible reactions, including the hydration/dehydration of silica gel and of hydrated copper (ll) sulfate.

Gases in air

Handling techniques for preparation and collection of gases, including the use of the gas syringe.

Oxygen     

The  atmosphere  –  composition  of:  to  include  presence  of  water  vapour, noble  gases  and  carbon  dioxide.  An  experimental  determination  of  the percentage composition by volume of nitrogen and oxygen in air.

Principle of the extraction of oxygen by fractional distillation of liquid air

Preparation   of   oxygen   by   the   catalytic   decomposition   of   hydrogen peroxide; test for oxygen.

Reaction of metals and non-metals with oxygen in air.

Types  of  oxide.  Oxides  of  the  common  elements  and  their  reaction with water.

Rusting of iron and its prevention.

Ozone as an unstable, naturally occurring, allotrope of oxygen.

Water and solutions

Simple treatment of soluble and insoluble substances in water. Saturated solutions and interpretation of solubility curves.

Physical properties; test for purity. Chemical tests for the presence of water.

Water  of  crystallisation,  deliquescence  and  efflorescence;  hygroscopic substances.

The presence  of air dissolved in water.  Students should be aware  that air dissolved in water has a different composition from ordinary air due to the difference in solubility of nitrogen and oxygen.

Ground water and sea water as important examples of aqueous solutions of specific solutes. Methods of purifying water, including a simple qualitative treatment of the technique of reverse osmosis for purifying brackish water and seawater.

Acids, bases and salts       

Aqueous  solutions  of  acidic  and  alkaline  substances  and  their  action  on indicators.  The  pH  scale  treated  as  an  arbitrary  scale  of  acidity  and alkalinity. Strong and weak acids.

Bases and alkalis.

Reaction  of  dilute  non-oxidising  acids  with  metals,  insoluble  bases  and alkalis, carbonates and hydrogencarbonates, sulfites.

Normal salts and acid salts; preparation of salts.

Comparison    of    solutions    of    hydrogen    chloride    in    water    and    in methylbenzene.

Standard  solutions,  acid-alkali  titrations  and  related  calculations  in  terms of moles and molar concentrations.

Hydrogen

Preparation  of  hydrogen  from  action  of  dilute  non-oxdising  acids  on certain  metals,  exemplified  by  dilute  hydrochloric  acid  or  dilute  sulfuric acid  on  magnesium,  zinc  or  iron.

Test  for  hydrogen.

Combustion  of hydrogen – its advantages and disadvantages as a fuel.

Reducing action of hydrogen with metal oxides.

Uses of hydrogen.

Carbon

Diamond  and  graphite  as  allotropes  of  carbon.

Reaction  of  carbon  with metal  oxides.

Laboratory  preparation  of  carbon  dioxide;  test  for  carbon dioxide.

Solubility   in   water   and   in   alkali.   Uses   of   carbon   dioxide.

Carbonates – some general properties limited to:   solubility, reaction with dilute acids, action of heat, preparing insoluble carbonates by precipitation.

Formation  of  carbon  dioxide  and  carbon  monoxide  from  processes  of complete / incomplete combustion of carbon and hydrocarbons.

Properties  of  carbon  monoxide  – neutral  gas,  toxic  nature,  combustion to form  carbon  dioxide;  reducing  action.  Separation  of  carbon  monoxide from a carbon monoxide / carbon dioxide mixture by absorption in alkali.”

Nitrogen

Nitrogen  as  an  unreactive  gas.

Principle  of  the  industrial  extraction  of nitrogen  from  liquid  air.

Manufacture  of  ammonia  by  reversible  direct union of its constituent elements.

Laboratory preparation of ammonia from ammonium salts; test for ammonia gas.

Properties of ammonia gas. Use of ammonia as a reducing agent  for certain metallic  oxides.

Preparation and properties  of  aqueous  ammonia  –  e.g.  alkalinity,  neutralisation  of  acids, precipitation   of   insoluble   metallic   hydroxides.

Ammonium   salts   – preparation by neutralisation; reaction with alkalis; use as fertilisers.

Sublimation / thermal dissociation of ammonium chloride.

Nitric  acid  as  a  dilute  acid  –  exemplified  by  its  reaction  with  metallic oxides,   e.g.   magnesium   oxide,   and   with   metallic   carbonates,   e.g. magnesium  carbonate.  Nitric  acid as an  oxidising  agent –  exemplified by its reaction with copper. Uses of nitric acid.

Nitrates   –   general   properties,   e.g.   solubility,   action   of   heat,   general methods of preparation.

Nitrogen monoxide – conversion to nitrogen dioxide on exposure to air.

Nitrogen dioxide – laboratory preparation by the thermal decomposition of lead (ll) nitrate; identification due to colour. Properties of nitrogen dioxide – e.g. solubility in water and acidity (linked to acid rain).”

Sulfur   

Allotropes of sulfur – rhombic / monoclinic. Uses of the element.

Hydrogen  sulfide  –  its  formation  by  the  action  of  dilute  acids  on  metal sulfides; toxic nature of the gas.

Laboratory preparation of sulfur dioxide by the action of a dilute acid on a sulfite;  test  for  the  gas.  Reactions  of  sulfur  dioxide  which  exemplify  its acidic  nature  and  its  reducing  action,  e.g.  colour  change  with  acidified potassium dichromate solution.

Sulfur trioxide – acidic nature.

Manufacture  of  sulfuric  acid  and  its  uses.

Properties  of  dilute  sulfuric acid.  Properties  of  concentrated  sulfuric  acid  –  including  its  action  on metallic  chlorides;  dehydrating  action,  e.g.  on  sugar  and  on  ethanol; oxidizing action e.g.  on copper; and hygroscopic  nature / use as a drying agent.”

Halogens

Chlorine,  bromine  and  iodine  –  similarities  and  trends  in  properties  of elements  in  Group  7.

Displacement  reactions  of  one  halogen  by another.

Laboratory    preparation    of    chlorine    by    oxidation    of    concentrated hydrochloric acid using manganese (lV) oxide.

Test for chlorine.

Bleaching action of chlorine water. Uses of chlorine.

Properties of dilute hydrochloric acid.

Preparation of chlorides from dilute hydrochloric acid.

Electrolysis

The  effect   of   electricity  on   various  solids,  liquids  (including  molten substances),   and   aqueous   solutions.   Conductors   and   non-conductors; electrolytes and non-electrolytes.

Reactivity Series

Detailed description of electrolytic decomposition and the factors affecting product formation at the electrodes. Factors will include – the position of the ion  in the reactivity series, concentration of ion and  the  nature of the electrodes.

Quantitative   aspects   of   electrolytic   cells:   the   Faraday   as   a   mole   of electrons.

Reactivity  series:  to  include  potassium,  sodium,  calcium,  magnesium, aluminium,  zinc,  iron,  lead,  hydrogen,  copper  and  silver.  Reactivity  of these metals with air (oxygen), water and dilute acids.

Displacement  reactions  involving  these  metals  and  their  compounds  to include: a metal displacing a less reactive metal from an aqueous metallic salt; a metal reducing an oxide of a less reactive metal.

The  simple  cell  –  as  a  means  of  transforming  chemical  energy  into electrical energy (e.g. Zn/Cu electrodes in dilute acid).

Group 1 and Group 2 metals

Alkali  metals  and  alkaline  earths  as  representatives  of  two  groups  or families of elements in the Periodic Table.

Sodium and potassium. Characteristics of the metals and similarities in the group:  typical  physical  properties;  chemical  properties  –  reaction  with oxygen (to form simple oxide, M2O, only), with water and with chlorine. Trend in reactivity going down the group.

Magnesium   and   calcium.   Similarities   in   the   group:   typical   physical properties;  chemical  properties  –  reaction  with  oxygen,  water  and  dilute acids.  Limestone  – conversion  of  limestone  (CaCO3) to  quicklime  (CaO) and subsequently to slaked lime [Ca(OH)2].

Hardness  in  water  caused  by  dissolved  calcium  and  magnesium  salts. Hardness  in  ground  water  associated  with  limestone  terrains.  Temporary and permanent hardness of water; softening of water.

The  advantages  of  synthetic  detergents  over  soap  when  used  with  hard water – simple treatment only. Scale formation, stalactites and stalagmites.

Less reactive metals: iron and copper

These  metals  are  to  be  presented  as  typical  of  the  transition  elements, illustrating  the  properties  of  variable  valency,  the  formation  of  coloured compounds and acting as catalysts.

Iron   

Action of steam, hydrogen chloride and chlorine on iron.

Hydroxides of iron (ll) and iron (lll) : formation by precipitation, colour.

Oxidation of iron (ll)  hydroxide to iron (lll) hydroxide by exposure to air.

Copper

Simple  compounds  of  copper:  Copper  (ll)  oxide  as  a  typical  basic  oxide and  its  use  in  preparing  copper  (ll)  salts  by  reaction  with  dilute  acids.

Reduction  of  copper  (ll)  oxide  by  hydrogen.

Thermal  decomposition  of copper (ll) carbonate and copper (ll) nitrate to give copper (ll) oxide.

Qualitative analysis 

Identification of sodium and potassium ions by flame tests.

Simple  test  tube  reactions  for  the  identification  of  the  following  ions  in solution:

Cations – ammonium, calcium, magnesium, aluminium, lead (ll), copper (ll), iron (ll) and  iron (lll);

A flame test can be used to distinguish between calcium and magnesium. Amphoteric character of aluminium and lead (ll) to be exploited in testing for  these  ions.  Potassium  iodide   solution  can  be  used  to  distinguish between aluminium and lead (ll) ions.

Anions  – carbonate, sulfite, sulfate, chloride, bromide, iodide, and nitrate. Nitrates  can  be  tested  by  reduction  with  aluminium  and  alkali  to  give ammonia.

Tests   for   the   following   gases:   oxygen,   hydrogen,   carbon   dioxide, ammonia, chlorine, hydrogen chloride and sulfur dioxide.

Organic chemistry

Definition  of  an  organic  compound.  The  unique  ability  of  carbon  to catenate leading to a large number of organic compounds.

Concept of a homologous series.

Alkanes as the first example of a homologous series: used to illustrate the terms   empirical   formula,   molecular   formula,   structural   formula   and general formula for a homologous series.

Nomenclature limited to the first five straight chain alkanes. Chain isomerism of C4H10 and C5H12 only.

Alkyl groups limited to methyl and ethyl only.

Gradation in physical properties of straight chain alkanes linked to length of hydrocarbon chain.

Complete  and  incomplete  combustion  of  hydrocarbons  resulting  in  the formation of carbon dioxide, carbon monoxide and carbon.

Uses of alkanes as fuels.

Saturated  nature  of  the  alkanes  resulting  in  substitution  reactions  with halogens, limited to monosubstitution.

Alkenes and alkynes as typical unsaturated hydrocarbons. General formula; structural formulae.

Combustion  of alkenes / alkynes – sootiness  of flame as an indication of unsaturation (or high percentage by mass of carbon).

Addition reactions of alkenes with hydrogen and halogens; and of ethene with hydrogen halide. Hydration of ethene.

Test  for  unsaturation  –  distinction  between  alkanes  and  alkenes/alkynes using bromine water.

Principle  of  addition  polymerisation  limited  to  polyethene,  PTFE  and PVC.

Petroleum  (crude  oil) as a  mixture  of hydrocarbons including natural  gas which can be separated by fractional distillation (fractionation); limited to names  of  fractions  and  the  fact  that  boiling  point  range  of  fraction  is related to carbon number. Uses of fractions.

Cracking  of  long  chain  alkanes  to  form  one  shorter  chain  alkane  and ethene. The cracking of diesel to obtain petrol and ethene as an industrial application of this process.

OH   as   the   functional   group.   General   formula,   structural   formulae; nomenclature.

Reactions of alcohols with sodium, with phosphorus (V) chloride to liberate misty fumes as a test for the OH group and with concentrated sulfuric acid to form alkenes.

Ethanol;  manufacture  from  glucose  (fermentation)  and  from  petroleum derived  ethene  (hydration).  Oxidation  of  ethanol  to  ethanoic  acid  using acidified potassium dichromate, limited to test-tube reaction.

Functional group isomerism limited to C2H6O.

COOH as the functional group. Naming of straight chain carboxylic acids up to pentanoic acid. Weak acidic nature.

Formation of salts by the usual methods.

Reaction of an organic acid and an alcohol to produce an ester and water in a  reversible  process.  Role  of  concentrated  sulfuric  acid  in  esterification. Recognition  of  the  esters  as  another  homologous  series  characterised by their fruity smell.

Atoms, molecules, Relative atomic mass, Relative molecular and formula mass.

Atomic nature of matter. Elements and compounds. Idea of size of atoms. Avogadro’s  constant  and  moles  of  atoms.  Relative  atomic  mass  with respect to 12C.

Molecules  and  relative  molecular  masses,  expressed  in  grammes,  as  the mass  of  a  mole  of  molecules.  Mole  of  ions.  Formula  masses  of  ionic compounds. Mole/mass interconversions.

Molar    volume    of    gases    and    Avogadro’s    law.    Mole/mass/volume interconversions  for  gases.  Calculations  to  find  the  volume  of  a  gas (measured at stp) that reacts, or is produced, in chemical reactions.

Use of PV/T = constant for converting gas volumes to and from standard conditions.

Gas to gas calculations based on Gay Lussac’s law of combining volumes.

Chemical formulae and equations

Experimental  determination  of  chemical  formulae  of  binary  compounds, from the reacting masses of the elements. (Oxides of metals offer suitable examples). Deriving the value of xH2O in a hydrated compound by heating to constant mass. Percentage composition and related calculations.

Balanced chemical equations to represent the relative number of particles involved  in  chemical  reactions.  States  of  substances,  [using  symbols  (s), (l),  (g) and  (aq)  for  solid,  liquid,  gas  and  aqueous  solution  respectively], should be specified where appropriate.

Experimental determinations intended to establish the combining ratios of reactants  and  products  to  include  gravimetry  and   volumetric  work,  in addition to measurements involving gas volumes.

All calculations involving chemical changes are to be performed in terms of moles of substance.”

Atomic structure and the Periodic Table

Nuclear model of the atom; protons, neutrons and electrons. Isotopes and relation of isotopy to relative atomic masses (limited to two isotopes).

Electrons in shells. Electronic configuration of the first eighteen elements (hydrogen   through   to   argon).   Relation   of   electronic   configuration   to electrovalency  and  covalency,  and  to  the  periodic  property  of  valency  / position of element in the Periodic Table.”

Structure and Bonding

Ionic bonding – formation of simple ions by loss or gain of electrons as governed by the octet rule. Physical properties of ionic compounds – high melting points, solubility in water, conductivity. Electrostatic attractions and three dimensional lattice of ions, limited to sodium chloride.

Covalent bonding – formation of simple molecules (e.g. H2, Cl2, O2, N2, HCl, H2O, NH3, CH4, CO2) by sharing of electrons as governed by the octet rule. Single, double and triple bonds.

Giant molecular structures, limited to diamond and graphite. High sublimation temperatures of these materials explained in terms of strong covalent bonds holding the lattice structure together. Electrical conductivity in graphite explained in terms of free electrons.

Distinction  between  physical  properties  of  giant  covalent  structures  and crystals  composed  of  simple  molecules.  The  latter  to  be  considered  as discreet molecules held together by weak intermolecular forces.

Dry ice and iodine are suitable examples.

Metallic crystals in terms of ions in a sea of mobile electrons. Thermal and electrical conductivity, and malleability, explained in terms of this bonding model.

Kinetic molecular theory and states of matter 

Diffusion   and   Brownian   motion   in   terms   of   simple   kinetic   theory.

Interconversions between the three states of matter.

Application of kinetic theory  to  explain  energy  requirements  for  changes  of  state;  different energy requirements  for  simple  molecular  versus  giant  molecular  lattices in relation to the nature of bonding (simple treatment only).

Qualitative treatment of the effect of change in temperature, or pressure or volume on a fixed mass of gas.”

Ionic theory; oxidation and reduction  

Ionic  half  equations  to  represent  synthesis  reactions  involving  binary compounds,   displacement   reactions   and   reactions   at   electrodes   for electrolytes  given  in  section

Ionic  equations  omitting  spectator ions for – neutralization, acid on a carbonate, acid on a sulfite, alkali on an ammonium salt and precipitation reactions.

Oxidation  and  reduction;  redox  reactions  in  terms  of  loss  and  gain  of oxygen/hydrogen; in terms of loss and gain of electrons.

The  concept  of  oxidation  number  limited  to  simple  binary  compounds between metals and non-metals. Its application in simple redox reactions.

Electrolysis  explained  in  terms  of  electron  transfer  between  ions  and electrodes.  Tendency  to  lose  or  accept  electrons  related  to  the  reactivity series.”

Energetics

The concept  that  energy changes accompany both  physical  and  chemical changes.    Exothermic    and    endothermic    reactions;    thermochemical equations  and  the  ΔH  notation.  The  Joule  or   kiloJoule  as  a  unit  of measuring  heat  energy.  Definitions  and  calculations  for  energy  changes accompanying   combustion,   solution,   neutralisation   and   precipitation reactions. Simple experimental determination of heat of solution and heat of neutralisation and estimation of the heat of combustion of a flammable liquid.

Heats  of reaction as the result  of energy changes when  bonds are broken and formed. Principle of conservation of energy.

Simple energy level diagrams illustrating the idea of activation energy.

Rates of reactions 

Concept  of  reaction  rate  as  the  increase  of   product  concentration  or decrease   of   reactant   concentration  with  time.  Dependence   of  rate   of heterogeneous reactions on the state of subdivision of a solid explained in terms of particle collisions involved in chemical change.

A   simple   kinetic   picture   to   be   used   to   account   for   the   effect   of concentration on the rate of homogeneous reactions. Effect of temperature. Definition of a catalyst. The effect of a catalyst on reaction rate.

Effect  of  light  on certain reactions,  e.g.  photoreduction  of  silver  halides; reaction of hydrogen with chlorine.”

Reversible reactions and  chemical equilibrium       

The concept of reversible change as exemplified by various processes, e.g. changes  of  state;  hydration  of  copper  (ll)   sulfate;  chromate/dichromate interconversions;  esterification.  Kinetic  picture  of  dynamic  equilibrium and use of the appropriate symbol to denote reversible reactions.

Le   Chatelier’s   principle   and   its   application   to   systems   in   dynamic equilibrium – qualitative treatment only.

Shifting the equilibrium position of a system by changing the temperature, the total pressure or the concentration of a species.

Thermal  dissociation  /  dynamic  equilibrium  of  dinitrogen  tetraoxide  / nitrogen dioxide.

The effect of a catalyst on the rate of attainment of equilibrium and not on the equilibrium position.

Raw materials and energy requirements   

Reference to the raw materials available for chemical processing as related to terrestrial abundance and ease of extraction from the source. Sources of materials: air, sea water, rock salt, limestone, iron ore, sulfur, gypsum and natural gas. Awareness that petroleum is a source of many useful organic products such as plastics, textiles, pharmaceuticals, dyes, explosives, etc.

Coal and petroleum as non-renewable energy sources.

Extraction of metals

Extraction  of  iron  from  haematite  and  aluminium  from  purified  bauxite. Method  of  extraction  related  to  position  of  metal  in  the  activity  series. Electrolytic purification of copper.

Uses of these metals as related to their properties.

The heavy chemicals industry

The Haber process for ammonia and the Contact process for sulfuric acid.

Main uses of ammonia and sulfuric acid.

Commonplace products of the chemical industry     

Reference  should  be  made  to  products  of  chemical  industry  which  are typically found in the home and other familiar environments.

The  use  of  the  following  materials  and  associated  properties  should  be discussed: action of soaps and detergents on hard water; domestic bleaches –  their  alkalinity  and  oxidising  action  exemplified  by  the  liberation  of iodine from potassium iodide solution; domestic LPG gas (mainly butane) and its flammability; the use of organic liquids as solvents, exemplified by alcohols,   liquid   alkanes   and   ethyl   ethanoate.   Baking   soda   (sodium hydrogencarbonate)  and  its  leavening  action;  vinegar  (ethanoic  acid)  and its acidity; quicklime (calcium oxide) and slaked lime (calcium hydroxide) and their alkalinity; caustic soda (NaOH); washing soda (Na2CO3.10H2O); Milk     of     Magnesia     (magnesium     hydroxide);     Plaster     of     Paris (CaSO4.½H2O).

Polythene,   polyvinylchloride   (PVC)   and   polytetrafluoroethene   (PTFE) should  be  mentioned  as  important  examples  of  synthetic  polymers  with various uses.”

Pollutant gases 

An  appreciation  of  the  problems  posed  to  the  natural  environment  by activities   which   involve   the   use   of   materials   and   their   chemical interconversions.

Carbon dioxide formation  as a result  of combustion processes  of carbon- containing  fossil  fuels.  The  greenhouse  effect  and  its  increase  leading  to global  warming.  Recognition  of  the  fact  that  most  activities  related  to energy  generation  ultimately  result  in  carbon  dioxide  emissions  from power plants.

An awareness that incomplete combustion of fossil fuels will result in the formation of toxic carbon monoxide.

Sulfur  dioxide  as  a  pollutant  gas;  its  source  and  presence  in  acid  rain; harmful effects of acid rain.

NOx  gases:  nitrogen  oxides  formed  in  the  internal  combustion  engine; contribution of nitrogen oxides to acid rain and to smog formation in urban polluted air. A simple treatment of the catalytic converter.

Importance of the ozone layer in the upper atmosphere and its depletion by

CFC’s. Awareness of harmful effect of ozone near the Earth’s surface.