Understanding Moles

1. Calculate the number of moles present in each of the following cases:	2. Calculate the mass of substance present in the following cases:	3. Calculate the relative molecular mass of the following substances and suggest a possible identity of each substance:
a) 2.3 g of Na	a) 0.05 moles of Cl_2	a) 0.015 moles, 0.42 g
b) 2.5 g of O ₂	b) 0.125 moles of KBr	b) 0.0125 moles, 0.50 g
c) 240 kg of CO ₂	c) 0.075 moles of $Ca(OH)_2$	c) 0.55 moles, 88 g
d) 12.5 g of Al(OH) ₃	d) 250 moles of Fe_2O_3	d) 2.25 moles, 63 g
e) 5.2 g of PbO ₂	e) 0.02 moles of $Al_2(SO_4)_3$	e) 0.00125 moles, 0.312 g

4. Calculate the number of particles in the following substances:

a) 0.025 moles b) 2.5 g of CO₂ c) 5.0 g of Pb d) 100 g of N₂

5. Calculate the mass of the following substances:

a) 2.5 x 10^{23} molecules of N₂ b) 1.5 x 10^{24} molecules of CO₂

c) 2×10^{20} atoms of Mg

Reacting Masses

- 6. Calculate the mass of H_2O required to react completely with 5.0 g of SiCl₄: $SiCl_4 + 2H_2O \rightarrow SiO_2 + 4HCl$
- 7. Calculate the mass of phosphorus required to make 200 g of phosphine, PH_3 , by the reaction: $P_4(s) + 3NaOH(aq) + 3H_2O(l) \rightarrow 3NaH_2PO_2(aq) + PH_3(g)$
- 8. Lead (IV) oxide reacts with concentrated hydrochloric acid as follows: $PbO_2(s) + 4HCl(aq) \rightarrow PbCl_2(s) + Cl_2(g) + 2H_2O(l)$ What mass of lead chloride would be obtained from 37.2g of PbO₂, and what mass of chlorine gas would be produced?
- 9. When copper (II) nitrate is heated, it decomposes according to the following equation: $2Cu(NO_3)_2(s) \rightarrow 2CuO(s) + 4NO_2(g) + O_2(g).$ When 20.0g of copper (II) nitrate is heated, what mass of copper (II) oxide would be produced? What mass of NO₂ would be produced?

10. A blast furnace can produce about 700 tonnes of iron a day. How much iron (III) oxide will be consumed? Assuming coke is pure carbon, how much coke would be needed to produce the necessary carbon monoxide?

 $Fe_2O_3(s) + 3CO(g) \rightarrow 2Fe(l) + 3CO_2(g)$ $2C(s) + O_2(g) \rightarrow 2CO(g)$

Ssolutions

Using molarities and concentrations

- 1. Calculate the number of moles of H_2SO_4 in 50 cm³ of a 0.50 moldm⁻³ solution.
- 2. Calculate the number of moles of $FeSO_4$ in 25 cm³ of a 0.2 moldm⁻³ solution.
- 3. Calculate the mass of $KMnO_4$ in 25 cm³ of a 0.02 moldm⁻³ solution.
- 4. Calculate the mass of $Pb(NO_3)_2$ in 30 cm³ of a 0.1 moldm⁻³ solution.
- 5. What is the molarity of 1.06g of H_2SO_4 in 250 cm³ of solution?
- 6. What is the molarity of 15.0 g of $CuSO_4.5H_2O$ in 250 cm³ of solution?
- 7. What volume of a 0.833 moldm⁻³ solution of H_2O_2 will be required to make 250 cm³ of a 0.100 moldm⁻³ solution?
- 8. What volume of a 0.50 moldm⁻³ solution of HCl will be required to make 100 cm³ of a 0.050M solution?
- 9. How many moles of NaCl are there in 25 cm^3 of a 50 gdm⁻³ solution?

Formulae, equations and ionic equations

A: Deduce the formulae of the following compounds:

- 1. Sodium chloride
- 3. Ammonium sulphate
- 5. Magnesium oxide
- 6. Copper (II) hydroxide

2.

4.

8.

- 7. Aluminium oxide
- 9. Copper (I) oxide
- Aluminium sulphate
 Lead (IV) oxide
- Copper (II) oxide
 Lead (II) sulphide

Aluminium chloride

Magnesium nitrate

Sodium carbonate

- Lead (IV) oxide 14. Calcium nitride
- B: Write out the full stoichiometric and ionic equations for the following reactions:
- 1. When aqueous magnesium chloride is added to aqueous silver nitrate, a white precipitate is formed.
- 2. When aqueous sodium hydroxide is added to aqueous aluminium sulphate, a white precipitate is formed.
- 3. When aqueous barium chloride is treated with dilute sodium sulphate, a white precipitate is formed.
- 4. Dilute sulphuric acid is neutralised by sodium hydroxide solution.
- 5. A pale blue precipitate is formed on slow addition of potassium hydroxide solution to copper (II) sulphate solution.
- 6. A white precipitate is formed when dilute hydrochloric acid is added to a solution of lead (II) nitrate.
- 7. When dilute calcium chloride is mixed with sulphuric acid, a white precipitate is formed.
- 8. Calcium carbonate dissolves in dilute hydrochloric acid with the evolution of a colourless gas.
- 9. When dilute sulphuric acid is added to sodium carbonate solution, a gas is given off.
- 10. When aqueous calcium chloride is mixed with aqueous sodium carbonate, a white precipitate is formed.
- 11. Ammonia gas dissolves in dilute nitric acid.